Forma e polarità delle molecole

I legami covalenti sono direzionali, per cui le molecole assumono forme geometriche ben definite, che possono essere previste applicando una teoria relativamente semplice, basata sulla repulsione delle coppie di elettroni di valenza, nota anche sotto la sigla VSEPR (dall'inglese valence shell electron pair repulsion). Secondo questa teoria, in una molecola formata da più di due atomi, sia i doppietti elettronici impegnati nei legami covalenti sia quelli liberi si dispongono lungo determinate direzioni, in modo che le repulsioni tra gli elettroni risultino minime: si hanno così caratteristici angoli di legame (v. tab. 5.1), che permettono di prevedere la geometria della molecola.

Due coppie di elettroni di legame, come, per esempio, nella molecola del cloruro di berillio BeCl2, si dispongono da parte opposta rispetto al nucleo dell'atomo centrale: la molecola è quindi lineare. Nel tricloruro di boro, BCl3, le tre coppie di elettroni si trovano alla maggior distanza possibile se disposte ai vertici di un triangolo equilatero con l'atomo di boro al centro, per cui la molecola è triangolare planare. Quattro coppie di elettroni di legame, come nel metano, CH4, danno una molecola tetraedrica.

Tutte le molecole rappresentate nella tabella 5.1 sono apolari, in quanto hanno forma simmetrica, per cui, nonostante i singoli legami siano polari, la somma dei loro momenti dipolari si annulla (inoltre tutti gli elettroni di valenza sono impegnati in legami).

Quando in una molecola l'atomo centrale possiede una o più coppie di elettroni non impegnati in legame, la molecola risulta asimmetrica e, poiché i singoli momenti dipolari non si annullano, risulta anche complessivamente polare. Questo è, per esempio, il caso dell'acqua, H2O e dell'ammoniaca, NH3 (v. tab. 5.2).